

Cluster Randomized Trial designs for time-varying intervention effects

Kenneth Menglin Lee,¹ Cheung Yin Bun¹ Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore

KEY POINTS:

- We derived and compared the variance estimators of exposure time varying effects (**TOI effects**) between different CRT designs.
- The SW-CRT has the most efficient estimator for the early TOI effect.
- The **PB-CRT** typically has the most efficient estimator for the **long-term** and **time-averaged TOI effects**.

Derive and compare the variance estimators of TOI effects between different CRT designs.

	(i) SW-CRT					(ii) P-CRT					(iii) PB-CRT					
	P1	P2	P3	P4	P5		P1	P2	P3	P4		P1	P2	P3	P4	P5
Clusters		δ_1	δ_2	δ_3	δ_4	Clusters	δ_1	δ_2	δ_3	δ_4	Clusters		δ_1	δ_2	δ_3	δ_4
			δ_1	δ_2	δ_3		δ_1	δ_2	δ_3	δ_4			δ_1	δ_2	δ_3	δ_4
				δ_1	δ_2											
					δ_1											

INTRODUCTION:

Cluster randomized trials (**CRTs**) are a useful alternative to the individually randomized controlled trial. In CRTs, clusters of individuals (e.g. schools, hospitals wards, communities) are randomized to receive the intervention.

The stepped-wedge cluster randomized trial (**SW-CRT**) is a popular type of CRT where clusters are randomized into sequences to begin receiving the intervention at different periods.

This design was recently used to study a novel corounding palliative care intervention on patient length of stay in the Singapore General Hospital (**SGH**).

NUMERICAL RESULTS:

The most efficient CRT design for estimating TOI effects (ICC = 0.05, m = cluster:period cell size).

The SGH study assumed a constant effect δ_c for the novel intervention. However, in practice, the intervention effect may vary as a function of exposure time. Such effects are referred to as time-on-intervention (**TOI**) effects δ_x where x = 1, ..., d.

The TOI effect estimands of interest are the:

Early TOI effect: δ_1

SIMULATION RESULTS:

The simulation parameters were based on a SW-CRT exploring the impact of discontinuing weekend health services in hospital wards. Early $\delta_1 = 0.14$, long-term $\delta_d = 0.29$, and time-averaged $\delta_{TA} = 0.23$ TOI effects

Design	$\widehat{\delta}_1$ (SE)	$\widehat{oldsymbol{\delta}}_d$ (SE)	$\widehat{oldsymbol{\delta}}_{TA}$ (SE)
(i) SW-CRT	0.145 (0.034)	0.410 (0.093)	0.267 (0.048)
(ii) P-CRT	0.151 (0.182)	0.279 (0.182)	0.240 (0.178)
(iii) PB-CRT	0.168 (0.059)	0.296 (0.061)	0.258 (0.045)

- Long-term TOI effect: $\delta_d = \delta_4$
- Time-averaged TOI effect: $\delta_{TA} = \left[\sum_{x=1}^{d} \delta_x\right]/d$

HYPOTHESIS:

- Due to the design's staggered crossover, estimates of long-term effects δ_d are less efficient than estimates of earlier TOI effects.
- Alternative CRT designs may be more efficient at modelling certain TOI effects than the SW-CRT.

CONCLUSIONS:

- 1. The **SW-CRT** has the most efficient estimator for the **early TOI effect**.
- The PB-CRT typically has the most efficient estimator for the long-term and time-averaged TOI effects.
- The PB-CRT with TOI effects can be a more appropriate CRT design for modelling TOI effects.

Lee, K. M. & Cheung, Y. B. Cluster Randomized Trial designs for modelling time-varying intervention effects (Accepted, Statistics in Medicine)